尊龙凯时人生就是搏

尊龙凯时人生就是搏

×ÔÈ»Óë¿ÆѧÖеÄÁ÷ÌåÁ¦Ñ§

2021-09-27 16:55:33 admin 41

        Ç°¶Îʱ¼äÓиöÐÂÎÅÄֵķзÐÑïÑÕã½­Àí¹¤´óѧ»¯Ñ§ÏµµÄÒ»Ãû˶ʿÒÔµÚÒ»×÷ÕßÔÚÌì϶¥¼¶ÆÚ¿¯NatureÉϽÒÏþһƪÂÛÎÄ£¬µ«×÷Õß²¢Ã»ÓÐÑ¡Ôñ¼ÌÐø¿ÆÑÐ֮·£¬¶øÊǻصּÒÏç×öÒ»ÃûͨË׵Ĺ«ÎñÔ±¡£

        Ð¡Í¬°éÃǶ¼ÖªµÀ£¬×÷Ϊ¿Æѧ½çµÄÁ½´ó¶¥¿¯£¬NatureºÍScienceÊÇÿ¸ö¿ÆÑÐÖ°Ô±ÐÄÖеÄÊ¥µØ£¬ÏëÒªÔÚÕâÁ½±¾ÆÚ¿¯ÉϽÒÏþÎÄÕÂÊǺÜÊÇÄÑÌâµÄ¡£ÄÇô×÷ΪһÃûÊ¿ÌåÁ¦Ñ§µÄ´ÓÒÃ÷ÈÕߣ¬ÎÒÃÇÀëNatureºÍScienceÓжàÔ¶ÄØ  £¿

        

        01×ÔÈ»Óë¿Æѧ

        NatureºÍScience¶¼ÊÇ×ÛºÏÀàÆÚ¿¯Àï×¼¶µÄ±£´æ¡£Nature´´¿¯ÓÚ1869Ä꣬×ܲ¿ÉèÓÚÓ¢¹úÂ׶Ø£¬ÏÖÔÚÁ¥ÊôÓÚ³öÊ鹫˾Springer Nature Group£¬ÖîÈçÁ£×ӵIJ¨¶¯ÐÔ¡¢DNA·Ö×ӽṹ¡¢°å¿é½á¹¹Ñ§Ëµ¡¢Ê׸ö¿Ë¡²¸È鶯ÎïµÈÖØÁ¿¼¶¿ÆÑÐЧ¹û¶¼ÔÚNatureÉϽÒÏþ¡£¶øScienceÔò´´¿¯ÓÚ1880Ä꣬×ܲ¿Î»ÓÚÃÀ¹ú»ªÊ¢¶ÙÌØÇø£¬Á¥ÊôÓÚ¹«ÒæÐÔ×éÖ¯AAAS£¨ÃÀ¹ú¿ÆѧÔö½ø»á£©£¬ÔÚScienceÉϽÒÏþµÄ´ú±íÐÔЧ¹û°üÀ¨¼ÓËÙÓîÖæ¡¢ÈËÀàÃâÒßȱÏݲ¡¶¾¡¢Á¿×ÓÅÌËã»úµÈÖØ´ó¿ÆѧͻÆÆ¡£

        

ͼƬҪº¦´Ê

        NatureºÍScienceµÄÖ÷¿¯¶¼ÊÇÖÜ¿¯£¬²¢ÉèÓÐÈô¸É×Ó¿¯£¬¿´ÆðÀ´ÊýÄ¿²¢²»ÉÙ£¬µ«ÏëÒª½ÒÏþһƪҲ¼«Îª²»Òס£¶þÕßµÄÖ÷¿¯¸üÊÇ¿ÉÍû¶ø²»¿É¼°£¬¾Ýͳ¼Æ£¬Æ½¾ùÔ¼Ò»ÍòÃû¿ÆÑÐÊÂÇéÕßÖвÅÓÐÒ»Á½¸öÐÒÔËÕßÄÜÔÚÖ÷¿¯ÉϽÒÏþÎÄÕ£¬ÊÇÃû¸±×ÅʵµÄÍòÀïÌôÒ»¡£ËäȻҲ²¢·Ç½ÒÏþÓÚNatureºÍScienceÉϵÄÎÄÕ¶¼ÊÇÏñDNA·Ö×ӽṹһÑùµÄÖØ´ó¿Æ¼¼Í»ÆÆ¡£ÄÇôһÑùƽ³£¶øÑÔ£¬Ê²Ã´ÑùµÄÄÚÈÝ¿ÉÒÔ·¢ÔÚNature»òScienceÄØ  £¿

        ÒÔ²»¾ÃÇ°½ÒÏþÓÚScienceÉϵÄһƪ¹ØÓÚÈËÌå´úлËÙÂʵÄÎÄÕÂΪÀý£¬×÷Õ߰ѶàÄêµÄÌÚ¹óʵÑéÊý¾Ý¾ÙÐÐÕûºÏ£¬·¢Ã÷ÈËÃÇÔÚÒ»ÂÉÌåÖØÏ£¬Ó¤Ó׶ùʱÆÚµÄг´úлËÙÂÊ×î¸ß£¨±È³ÉÄêÈËÔ¼¸ß50%£©²¢ËæÄêËê×îÏȵݼõ£¬ÖÁ¶þÊ®¼¸ËêʱµÖ´ïÎȹ̲¢Î¬³Öµ½60Ë֮꣬ºóÔÙ´ÎÒԺܵͣ¨Ô¼Ã¿Äê0.7%£©µÄËÙÂÊϽµ£¬Ç㸲ÁËÈËÃǹŰåµÄÈÏÖª£¬²¢Å¾Å¾´òÁ³¡°ÖÐÄê·¢¸£¡±ÈªÔ´ÓÚ´úлËÙÂʼ±¾çϽµµÄ˵´Ç¡£

ͼƬҪº¦´Ê


      

        ¿ÉÒÔ¿´µÄ³öÀ´£¬ÕâÑùµÄÎÄÕÂãýÃ𣨻òʹÓã©ÁËÀ´Ö®²»Ò×µÄÊý¾Ý£¬ËùµÃµÄ½áÂÛÓëÈËÃǵĹÌÓÐÈÏÖªÓÐÏÔ×ŵIJî±ð£¬ÁîÈ˲»½û·¢³ö¡°Ô­À´ÔÆÔÆ¡±µÄͨ͸¸ÐÉË£¬ËãÊǶ¥¿¯ÎÄÕµĹ淶¡£ÕâÑùµÄÎÄÕ¾ßÓи߶ȵÄÊÖÒÕ÷缯ÐÔ£¬²»¹ýÓÉÓÚƪ·ùËùÏÞ£¬Í¨³£ÊÇ´ó×ÚÑо¿ÊÂÇéµÄ¸ÅÊö¡£¶øÎÄ×Ö±íÊöÔòÂöÂçÇåÎúÓÖæ¸æ¸µÀÀ´£¬¿°³ÆÊÖÒÕºÍÒÕÊõµÄÍŽá¡£

        

        02  NSÓëÁ÷ÌåÁ¦Ñ§

        ÕýÈçÉúÎïÀàÓÐCell£¬Ò½¿ÆÀàÓÐLancet£¬Á÷ÌåÁ¦Ñ§ÀàÒ²ÓÐ×Ô¼ºµÄ¶¥¼¶ÆÚ¿¯£¬ÈçJFM¡¢PRL¡¢POFµÈ¡£²»¹ýNatureºÍScienceÈÔÈ»¸ßÎݽ¨ê²£¬±»ºÏ³ÆΪNS£¬¶øÕâ¸ö¼ò³ÆÓÖÇ¡Ç¡ºÍÁ÷ÌåÈËÐÄÖеġ°°×Ô¹⡱¡ª¡ªNS·½³ÌͬÃû£¬Ò²Òò´Ë¸¶ÓëÁËÕâ¸ö¼ò³Æ¸üÉî¿ÌµÄ¼ÄÒå¡£

        ÔÚÄÉάºÍ˹ÍпË˹ǰºóµÄÒ»¶ÎʱÆÚ£¬ÕýÖµ¾­µäÁ÷ÌåÁ¦Ñ§Ñо¿µÄ»Æ½ðÄêÔ£¬²»¹ý±ËʱµÄÐÅÏ¢½»Á÷»¹Ã»ÄÇôͨ³©£¬Ñ§ÕßÃǸüÔ¸Òâ¾Í½ü½ÒÏþ×Ô¼ºµÄЧ¹û¡£¶øNSÆÚ¿¯Ò²»¹Î´ÃæÊÀ£¬¸ü²»±Ø˵±»´óÉñÃÇÇàíù¡£Nature´´¿¯Ö®ºó£¬×øÓµÓ¢¹ú»Ê¼Òѧ»á»áÊ¿Í·ÏεÄÀ×ŵʱʱʱ¾Í»á»ÓÈ÷һƪ¡£²»¹ýѧÕßÃǶÔÎÄÕ½ÒÏþÔÚÄÇÀﲢûÓÐÄÇôÔÚÒ⣬À×ŵ¶ÔNatureµÄÆ«ÐÒ»òÐíÒ²Ö´ÙÇÓÉÓÚÀëµÃ½ü°ÕÁË¡£

         

ͼƬҪº¦´Ê

        Ïà±ÈÓÚÆäËüÆÚ¿¯£¬ÏÖ´úµÄNS¸ü¹Ø×¢ÐÂÐËѧ¿ÆµÄÇ°ÑØÐÔ¡¢»úÀíÐÔÏ£Íû¡£ºÃ±È1940ÄêÔÂÒԺ󣬺Í×ÔÈ»¿ÆѧºÜÊÇ¿¿½üµÄ´óÆøºÍº£ÑóÍÄÁ÷Ñо¿Êܵ½ÁËNSºÜ³¤Ê±¼äµÄÇàíù£¬¶ø½üЩÄêÀ´Ñо¿Î¢ÄÉÃ×Á÷¶¯¡¢Î¢Á÷¿Ø¡¢ÉúÎïѧÁ÷¶¯¡¢ÐÇÌåÁ÷¶¯¾ÍÒª±È¹Å°åÁ÷ÌåÁ¦Ñ§¸üÈÝÒ×±»ÎüÊÕ¡£×î½ü¼¸ÄêNatureÉϹØÓÚ΢±ê×¼Á÷¶¯µÄÂÛÎľÍÓм¸Ê®ÆªÖ®¶à£¬¶ø¹Å°åÁ÷ÌåÁ¦Ñ§ÁìÓòÔòÉÙÁËÐí¶à¡£×î½üһƪ¹ØÓÚÍÄÁ÷Ñо¿µÄÎÄÕÂÕվɽÒÏþÓÚ2015Ä꣬Ö÷ÒªÑо¿ÄÚÈÝΪͨ¹ý½«Á÷¶¯Ú¹ÊÍΪÍÄÁ÷·ÇÏßÐÔÈö²¥µÄË«ÎÈ̬ϵͳ£¬À´ÐÎò¹ÜµÀÖбÚÃæ¼ôÇÐÒýÆðµÄÍÄÁ÷תÞæµÄ´¥·¢»úÖÆ¡£

ͼƬҪº¦´Ê

        ÄÜ·¢NS¿¿µÄ²»µ«½öÊÇʵÁ¦£¬»¹ÐèҪһЩÔËÆø¡£Ð¹ÚÒßÇéϯ¾íÈ«ÇòÎüÒýÁË´ó×ÚѧÕß¾ÙÐÐÑо¿£¬¶øÆøÁ÷¶Ô¼²²¡Èö²¥µÄÓ°ÏìÒ²¸üÈÝÒ×±»ÂÛÎÄÉóÔÄÕß½ÓÊÜ¡£2021Äê²Å¹ýÁËÒ»°ë£¬¾ÍÓв»ÉÙ¹ØÓÚ²¡¶¾À©É¢Ñо¿µÄÎÄÕµÇÉÏScience¼°Æä×Ó¿¯¡£ÒÔÊÇ£¬ÏëÒªÔÚNSÉÏÓµÓÐ×Ô¼ºµÄÃû×Ö£¬³ýÁËÑ¡¶ÔÆ«ÏòÖ®Í⣬»¹Òª½ô¶¢Ê±ÊÆ¡£

ͼƬҪº¦´Ê

        ×÷ΪÁ÷ÌåÁ¦Ñ§µÄÁíÒ»¸ö½­ºþ£¬¸ñ×Ó²£¶û×ÈÂüÒªÁ죨LBM£©×Ô´ÓÉÏÊÀ¼Í80ÄêÔ½µÉúÒÔÀ´Ò²·¢ÎÄÎÞÊý£¬²»¹ý´ó¶à¼ûÓÚÎïÀíѧ»òͳ¼ÆÁ¦Ñ§Ïà¹ØµÄ¿¯ÎïÖС£¶øÔÚNSÁ½´ó¶¥¿¯ÖУ¬ÏÖÔÚÒ²½öÓÐÁ½Æª¹ØÓÚLBMµÄÎÄÕ±»½ÒÏþ¡£

        µÚһƪΪ2003Äê³Â»¦¶«µÈѧÕß½ÒÏþÓÚScienceµÄÎÄÕ¡¶Extended Boltzmann Kinetic Equation for Turbulent Flows¡·£¬¸ÃÎÄÕÂϵͳÐðÊöÁ˹ØÓڹŰåCFDÒªÁìÓÐÌôÕ½ÐÔµÄÖØ´óÁ÷³¡ÎÊÌ⣬LBMÒªÁì¿ÉÒÔ¸üÕæʵµÄ¸´ÏÖÆäÎïÀíÀ´Ô´¡£Óë¹Å°åÒªÁìÖ±½Ó¶Ô¿ØÖÆ·½³ÌÓ뼸ºÎÄ£×ӵĴÖÁ £»¯´¦Àí²î±ð£¬LBMÔÚ½é¹Û²ã¼¶Çó½âÁ÷³¡£¬´ËºóÔÙͳ¼Æƽ¾ù»ñÈ¡ºê¹Û±äÁ¿£¬Æä´ÖÁ £»¯¸ü¶àµÄÌåÏÖÔÚºó´¦ÀíÉ϶ø·ÇÇó½âÀú³ÌÖС£

ͼƬҪº¦´Ê

        ÔڹŰåRANSµÄ¿ò¼ÜÏ£¬ÍÄÁ÷Ä£×Ó½«Á÷¶¯±ê×¼·ÖΪ´ó±ê×¼ºÍС±ê×¼µÄÎУ¬¶øÕæʵµÄÍÄÁ÷ÖдóÎкÍСÎÐÊÇʵʱÏ໥×÷ÓõÄ£¬²¢°üÀ¨ÁËÀúʷЧӦ£¬Òò¶øÏÞÖÆÁËÍÄÁ÷Ä£×ÓµÄÊÊÓùæÄ£¡£¸ÃÎÄÕÂÖ¸³ö£¬ÍØÕ¹ºóLBMÒªÁì²»µ«ÔÚ±ê×¼ÊèÉ¢ºã¶¨µÄÁ÷¶¯ÖÐÓÐÓ㬲¢ÇÒ¿ÉÒÔº­¸Ç±ê×¼Êèɢ˲ʱת±äµÄÁ÷¶¯¡£

        ¸ÃÎÄÕ»¹Ê¹ÓÃÍÄÁ÷³Úԥʱ¼äÈ¡´ú·Ö×Ó³Úԥʱ¼ä£¬ÍØ¿íÁËBGKÅöײģ×ÓµÄÓ¦ÓùæÄ££¬²¢Ö¸³öÆ亭¸ÇÁ˾«Á·µÄ¶¯Á¦Ñ§Ï໥×÷Óã¬Äܹ»±í´ï¸ü¸»ºñµÄÎïÀíÄÚÔÚ²¢ÓâÔ½RANS¡£ÎÄÕµÄ×îºóʹÓÃÏìÓ¦µÄÊýÖµÒªÁìÕ¹ÍûÆû³µºÍ·É»úµÄÍâÁ÷³¡£¬²¢»ñµÃÁËÏ൱׼ȷµÄЧ¹û¡£

        ¶øʱ¸ô18Äêºó£¬½ñÄê5ÔÂÓÖÓÐһƪոгö¯µÄLBMÏà¹ØÎÄÕÂÐû²¼ÓÚNature¡£Giacomo FalcucciµÈѧÕß½ÒÏþÁË¡¶Extreme flow simulations reveal skeletal adaptations of deep-sea sponges¡·Ò»ÎÄ£¬Ñо¿ÁËÒ»ÖÖÉîË®²£Á§º£Ãà¹Ç÷À½á¹¹µÄÁ÷Ì嶯Á¦Ñ§ÌØÕ÷¡£

ͼƬҪº¦´Ê

        ÕâÖÖÇÉÃîÉúÎïÉúÑÄÔÚº£µ×£¬¾ßÓп¿½ü×îÓÅÖÊÁÏÂþÑܵIJ㻯¹Ç÷À½á¹¹£¬µ«ÈËÃǶÔÆäË®¶¯Á¦Ñ§ÌØÕ÷Ñо¿ÉõÉÙ¡£×÷Õß¹¹½¨ÁËLBMµÄÅÌËãÄ£×Ó£¬²¢Ê¹ÓÃ500ÒڵľÞÁ¿¸ñ×Ó¶ÔÉîË®²£Á§º£ÃàµÄ²î±ðÉúÑÄÖÜÆÚ¾ÙÐÐÁËÄ£Ä⣬·¢Ã÷Æä¹Ç¼ÜÅŲ¼Äܹ»½µµÍË®¶¯Á¦Ó¦Á¦²¢Ôö½øÁËÏà¹ØµÄÄÚ²¿ÔÙÑ­»·Ä£Ê½£¬Õ¹ÏÖÁËÉîÔ¨ÉúÎïµÄÌØÊâ˳Ӧ»úÖÆ¡£

ͼƬҪº¦´Ê

        ±¾ÆªÎÄÕµÄ×÷Õß»¹´ó·½µÄÔÚGitHubÉÏ¿ªÔ´ÁËÆäÈí¼þ´úÂëºÍÊý¾Ý£¬²»¹ýС±àÒÔΪÕâƪÎÄÕÂ×îÖ÷ÒªµÄÒâÒåÔÚÓÚÏò¸÷ÈËÅú×¢ÎúÒ»¸öÉî¿ÌµÄÔ­Àí£º¿ÆÑÐÒª×öºÃ£¬¾­·Ñ²»¿ÉÉÙ¡£

        ÖµµÃÒ»ÌáµÄÊÇ£¬ÉÏÊöÁ½ÆªÎÄÕµÄÓÐһλÅäºÏµÄ×÷Õߣ¬Òâ´óÀûÎïÀíѧ¼ÒSauro Succi¡£×÷ΪLBMÁìÓòµÄ´«ÆæÈËÎSucciµÄרÖø¡¶The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond¡·ÊÇÐí¶àLBMѧϰÕߵĽ̿ÎÊé¡£


Á¬Ã¦×Éѯ

µØ Ö·£ºÕã½­Ê¡º¼ÖÝÊÐÎ÷Ϫ·525ºÅÕã½­´óѧ¿Æ¼¼Ô°CÂ¥203ºÅ

尊龙凯时 - 人生就是搏!
½Ó´ý¿í´ó¿Í»§À´µç×Éѯ 0571-88732068

ЧÀÍʱ¼ä

7*24Сʱ

sitemap¡¢ÍøÕ¾µØͼ